
RNA differs from DNA in one of the sugars that makes up its backbone and one of the bases that makes up its side branches (uracil instead of thymine); it is also usually found in single strands instead of DNA's double helix. New discoveries, though, are showing RNA does far more than passively transfer DNA's information to other places. It, too, is a masterpiece of intelligent design and function.
A paper in Nature describes how information is stored not only in RNA's base sequence, but in its folds. Because RNA has more degrees of freedom, it can take on a wide variety of forms not possible for DNA. "RNA has a dual role as an informational molecule and a direct effector of biological tasks. The latter function is enabled by RNA's ability to adopt complex secondary and tertiary folds and thus has motivated extensive computational and experimental efforts for determining RNA structures," the authors begin (emphasis added). In their conclusion, they say, "We identify hundreds of specific mRNA regions that are highly structured in vivo, and we show for three examples that these structures affect protein expression."
In other words, the structure, not just the sequence, carries functional information. "Our studies provide an excellent set of candidate regions, among the truly enormous number of structured regions seen in vitro, for exploring the regulatory role of structured mRNAs."